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Abstract— In this paper, we propose a new activity analysis 

framework to facilitate the independence of elderly adults living 

in the community, reduce risks, and enhance the quality of life at 

home by using RGBD cameras. Our contributions include two 

aspects: 1) recognizing 5 activities related to falling including 

standing, fall from standing, fall from sitting, sit on chair, and sit 

on floor. The main analysis is based on the depth information 

due to the advantages of handling illumination changes and 

identity protection. If the monitored person is out of the range of 

3D camera, RGB-based video analysis module is employed to 

continue the activity monitoring. 2) Identifying the monitored 

person if there are multiple people in camera view by combining 

depth and RGB information. We have collected a dataset under 

different lighting conditions and ranges. Experimental results 

demonstrate the effectiveness of the proposal framework. 

I. INTRODUCTION 

In 2008, about 39 million Americans were 65 years old or 

above. This number is likely to increase rapidly as the baby 

boomer generation ages. The older population increased 

elevenfold between 1900 and 1994, while the nonelderly 

increased only threefold, and the oldest old (persons of 85 or 

older) is the fastest growing segment of the older adult 

population [6]. The proportion requiring personal assistance 

with everyday activities increases with age, ranging from 9 

percent for those who are 65 to 69 years old to 50 percent for 

those who are 85 or older. Furthermore, the likelihood of 

dementia or Alzheimer’s disease increases with age over 65 

[1]. In 2006, there were 26.6 million sufferers worldwide. 

These data indicate that the demand for caregivers will reach 

far beyond the number of individuals able to provide care. 

One solution to this growing problem is to find ways to 

enable elders to live independently and safely in their own 

homes for as long as possible [7]. Recent technology 

developments in computer vision, digital cameras, and 

computers make it possible to assist the independent living of 

older adults by developing safety awareness technologies to 

analyze the elder’s activities of daily living (ADLs) at home. 

Important activities that effect independence include ADLs 

(e.g., taking medications, getting into and out of bed, eating, 

bathing, grooming/hygiene, dressing, socializing, doing 

laundry, cooking, cleaning). Among these activities, a few are 

rated as very difficult to monitor, including taking medication, 

falling and eating [15]. In this paper, we focus on falling 

detection and attempt to recognize it from other similar 

activities related to falling such as sit on floor, etc. 

We propose an activity analysis framework to recognize 

five activities related to falling event including standing, fall 

from standing, fall from sitting, sit on chair, and sit on floor 

by using RGBD camera. Compared with traditional video 

surveillance cameras, RGBD cameras have advantages of 

handling illumination changes and privacy protection. Our 

activity analysis depends on both depth information and 

appearance information. The kinematic features extracted 

from 3D information consist of two parts: 1) proposed 

structure similarity and 2) head-floor distance, which is 

defined as the vertical distance between the head and the floor 

plane. For user identification, from 2D appearance RGB 

information, we employ a background subtraction and 

tracking method and represent actions as histogram features. 

Classification on two different SVM schemes are performed 

and analysis. Experimental results demonstrate that our 

proposed framework is robust and efficient in falling event 

detection. 

We further develop a patch-based histogram matching 

method by combining 3D information (depth) and appearance 

information (RGB) to identify different people. The 

effectiveness is evaluated on Cornell University Dataset [13]. 

II. RELATED WORK 

Helping people with special needs by human activity 

recognition is a hot topic in computer vision. Nait-Charif et al. 

developed a computer-vision based system to recognize 

abnormal activity in daily life [10] in a supportive home 

environment. The system tracked human activity and 

summarized frequent active regions to learn a model of 

normal activity. It detected falling as an abnormal activity, 

which is very important in patient monitoring systems. Unlike 

using location cues in [10], Wang et al. [14] proposed to use 

gestures by applying a deformable body parts model [4] to 

detect lying people in a single image. To detect certain parts 

of human body, Buehler et al. [2] proposed to fit an upper-

body model for sign language recognition. Different from 

traditional RGB channel, recognizing activities using depth 

images is a new trend in recent research [18], [8] and [13] 

especially after Microsoft released its SDK for Kinect 

cameras [9].  Li et al. [8] proposed to use bag of 3D points to 

represent and recognize human actions based on 3D silhouette 

matching. Hidden Markov Model (HMM) is employed with 

depth images to effectively recognize human activities in [13]. 

More recently, Yang and Tian [16] proposed to apply PCA 

and NBNN techniques to very discriminative skeleton 

features, EigenJoints, to represent game-interactive activities 

and their method outperforms the benchmark in [8]. Other 

work also tried to recover more details such as head-pose 

from RGBD videos [11]. Two-person interactions are studied 



by Yun et al. [17]. In this paper, our goal is to effectively 

recognize activities related to falling event by using both 3D 

depth and 2D appearance information. 

 

III. FALLING EVENT DETECTION AND RECOGNITION 

A. Feature Extraction and Representation 

1. Kinematic Feature Extraction 

Microsoft Kinect SDK [9] provides 20 joints on human 

body tracked for each person in each depth frame. We select 8 

joints on head and torso since intuitively other joints on limbs 

introduce more noise than useful information to distinguish 

whether a person has fallen or not. The selected 8 joints, as 

shown in Fig. 1(a) top row, keep a certain structure when a 

person is standing or sitting. The structure is not affected 

much when a person is performing normal activities. 

However, the structure is no longer reliable when a person has 

fallen (as shown in Fig. 1(a), L1 and L2 in bottom tow). We 

employ the statistics feature, structure similarity cost, which is 

calculated from the 3D coordinates of the 8 joints as the first 

feature. The other feature is the head-floor distance which 

measures the distance between user’s head position and the 

floor plane. 
TABLE   I 

FIVE ACTIVITIES RELATED TO FALLING EVENT RECOGNIZED IN THIS PAPER 

L1 Fall from sitting L2 Fall from standing 

L3 Standing L4 Sit on chair 

L5 Sit on floor   

 

2. Kinematic Feature Representation 

Fig. 1(a) displays the initial (the first row) and final (the 

second row) poses of the five activities to be recognized. 

Obviously, the two “falling” events (L1: Fall from sitting and 

L2: Fall from standing) have much larger deformation on the 

skeleton structure than the other three “non-falling” events. 

We define that the structure similarity cost  ( )of a skeleton 

structure   to measure the degree of deformation as the 

summation of angles changed between the corresponding 

joints of the skeleton between the initial and final poses as 

following: 
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where  (     ) and  (     ) denote the angles between two 

joints i and j on skeletons   and  , respectively, which is 

given as: 
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where the Euclidean distance between two joints i and j is 

denoted as dist(i, j).  

Examples of the structure similarity costs (in logarithm) of 

different activities are displayed in Fig. 1(b) (left). Red (“fall 

from standing”) and yellow (“fall from chair”) curves 

obviously demonstrate significant costs as expected. We 

extract two statistics of the structure similarity cost (mean   

and the variance  ) to represent the action in a video sequence. 

Another feature we use for activity recognition is head-floor 

distance. Given a floor plane constraint by 

[A,B,C,D][x,y,z,1]
T
=0 and homogeneous representation of 

head 3D position [          ], head-floor distance can be 

estimated as [          ][A,B,C,D]
T
, where the parameters 

of floor plane can be fitted using RANSAC algorithm. As 

shown in the right of Fig. 1(b), head-floor distance is also a 

discriminative feature for fall related activity recognition. We 

employ the highest value h and the minimum value (lowest) l 

of head-floor distance at different skeleton poses as the last 

two elements in our kinematic feature vector. The kinematic 

feature vector from 3D depth information is denoted as [ ;  ; 

h; l]. 

Depth sensor is robust to handle illumination changes, 

however, when the user is out of the depth range, the skeleton 

structure from the depth information will not be available. In 

such situations, we will employ appearance information from 

RGB channels.  

 

 

Fig. 1 Illustration of kinematic feature extraction: the structure similarity cost. 

(a) From left to right, each label’s initial (top) and final pose (bottom). (b) 

Two main elements we extracted from skeletons as features. Left: logarithm 
of structure similarity of each activity. Right: Height sequences in each 

activity. Five activities to be recognized are listed in Table 1. 

3. Appearance Feature Extraction and Representation 

In order to recognize falling events from appearance 

information, we perform a simple background subtraction 

method to detect moving people and then a tracking method 

to handle situations when people stay static for a long period 

(e.g., lying on the floor): 
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where Mi is the foreground mask, merged by current frame 

difference Di and the mask Mi-1 of the last frame; S and   

indicate the current foreground region area and merge rate. 



We represent a video sequence by a histogram of the ratio 

width/height of the bounding box of detected human. 

In this paper, the action recognition is mainly accomplished 

by using kinematic features. Appearance indicator is 

employed to detect “falling” events when the user moves out 

of the range of the depth sensor. 

 

B. Activity Classification 

We employ a SVM classifier to recognize different actions 

by using a “1-vs.-all” structure. ``1-vs.-all’’ is applied to 

kinematic features since the inter-class difference can be well 

represented by our modeling (as shown in Fig. 2 (a) and (b)). 

However, considering the semantic relationship between the 

five action classes, a structural SVM [5] is logically suitable 

for this problem, especially for our appearance indicator, 

whose discriminative power is high enough for the 1
st
 layer 

classification (as shown as solid lines in Fig. 2 (a) and (c)) 

(“falling” vs. “non-falling”) yet limited in lower layers. 

 

Fig. 2 (a) and (b) are of well distinguishable feature points (as kinematic 
features) while (c) and (d) are more clutter. Solid and dashed lines in (a) and 

(c) are two different layered classification boundaries, respectively and lines 

of different colors in (b) and (d) are ``1-vs.-all’’ classifier boundaries. In (a) 
and (c), the 1st layer classification can be done based on shapes and second 

layer classification can be done based on colors. Since lack of such semantic 

information, performance of (d) is apparently worse than (c). 

IV. IDENTIFY MULTIPLE USERS 

If more than one user appears in the view of a camera or 

cross different cameras, both RGB channels and D (depth) 

channel will be combined to perform user identification. 

Although some embedded user identification functions are 

available in both Microsoft SDK for Kinect [9] and 

PrimeSense OpenNI [12] to track a user. However, this 

tracking can only answer questions like “How many users are 

there?” “Is the tracked user lost?” or “Is there a new user?” 

etc. When a person is out of the camera view and then re-

enter the view, it is unable to tell whether this person is a new 

user or not. 

In our approach, we combine 3D information (depth 

channel) and appearance information (HS channels in HSV 

color model) to accomplish user identification. The 

combination includes two meanings: 1) we extract 4 patches 

in color image according to certain skeleton joints, which are 

from depth channel. The 4 patches are as shown in Fig. 3, one 

along shoulders, one on torso and two on two upper legs. 2) A 

weighted strategy is applied on each pixel inside patches 

based on their depth value, as described in the Section below. 

 

 

Fig. 3 Left: A sample image from Cornell Dataset with 4 patches we designed 

for identifying multiple users based on color information. (a) Two patches on 
upper body. (b) Corresponding depth channel. (c) Mask of weighting. 

A. Color-histogram-based user appearance representation 

Human detection and calibration (detected certain joints on 

skeleton, such as head, shoulder, torso etc.) for RGBD images 

are provided by built-in functions in Microsoft SDK [9] and 

PrimeSense OpenNI libraries [12]. To identify user, as shown 

in Fig. 3, we extract four patches from RGB video based on 

skeleton joints from the depth channel: one on the shoulder, 

one on the torso, and two on the upper legs.  

In our method, we assign the pixels with different weights 

according to their distance to the local joints on the Z (depth) 

direction. Local joints are defined as the joints inside the 

current patch, for example: in the patch along the shoulders 

(as shown in Fig. 3), the local joints are ones on the two 

shoulders. We denote the weight as wi: 
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where zi is the depth value of the i
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 pixel in the patch and m is 

the point to be measured. 

Sometimes the tracked joints of skeleton may locate on the 

background instead on the body due to fast motion or false 

alignment. We select the measure point m with following rule:  
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where mk is the median depth of all 8 joints. By doing so, we 

can get rid of the affection on weight of false-aligned joints. 

To handle illumination changes, we transform the RGB to 

HSV color space and only use H and S channels. We quantize 

each channel in each patch into 20 bins, each pixel votes one 

bin with its weight wi as calculated above. Then a 

normalization step is conducted. 



 

B. Identifying user using SVM classifier 

For each patch, we generate a histogram in H and S 

channels as the feature representation respectively. We 

concatenate the histograms of four patches and two channels 

together and use the bin-wise difference as the input of a 

binary SVM classifier to identify if the same person appears 

at different time under one camera view or under different 

camera views. 

 

V. EXPERIMENTAL RESULTS 

A. Falling Detection and Recognition 

1. Experimental Setup and Dataset 

We collected a dataset containing five actions performed by 

five different subjects under three different conditions: 1) 

subject is within the range of the 3D depth sensor (<4 meters 

distance between the subject and the camera) and with normal 

illumination; 2) Subject is within the range of depth sensor 

but without enough illumination; and 3) subject is out the 

range of the 3D depth sensor (>4 meters distance between the 

subject and the camera) and with normal illumination. In total 

there are 200 video sequences including 100 videos for 

condition 1, 50 videos for condition 2, and 50 videos for 

condition 3. Each video consists of one activity. Some 

examples of our dataset are shown in Fig. 5. 

In our experiments, we select 50 videos which covering all 

5 subjects and 5 actions for training. The remaining 150 

sequences are used for testing. The parameters setting in 

appearance model are background subtraction difference 

threshold    , frame step    , the pixel number 

threshold       , maximum acceptable value of 

width/height ratio m and bin size b in the histogram 

representation are {4,0.5} {2, 0.5} {2, 0.1} and {2, 0.5} for 

each classifier in structure classifier set. For the kinematic 

model, there is no manually tuned parameter. 

 

2. Performance Analysis of Activity Recognition 

To evaluate the performance of both kinematic model and 

appearance model under different conditions, we conduct 8 

combinations of conditions and classifier structures (2 models 

times 2 classifier structures times two situations, normal and 

special). The training set contains 50 video sequences with 

normal condition. We use this training dataset to train both 

structure and “1-vs.-all” classifier sets. Performances of two 

classifier structures as well as models of kinematic and 

appearance are also compared using corresponding test 

datasets. The activity recognition accuracies of the proposed 

methods are displayed in Fig. 4. As shown in Fig. 4(a) and (b), 

since the features we used in appearance model is not as 

discriminative as in kinematic model, the appearance model 

achieves an average accuracy at 76% while the kinematic 

model achieves a much higher accuracy at 98%. Therefore, 

appearance features are mainly proposed to distinguish coarse 

classes between “falling” (i.e., fall from chair, fall from 

standing) and related “non-falling” events (i.e., standing, sit 

on chair, sit on floor). For this coarse classification to 

distinguish “falling” from “non-falling”, as shown in Fig. 4(c), 

the accuracy of appearance model based coarse action classes 

is 92% (C1), which is comparable with that of kinematic 

model as in Fig. 4 (a), 94%. Apparently, recognition accuracy 

decreases as the class layer goes finer just as our expectation. 

For kinematic model, as shown in Fig. 4 (b) and (d), we 

observe that the accuracy of each classifier is relative high, 

Fig. 4 Performances of the proposed method on different situations. (a)-(d) are using structure SVM classifier set. (e)-(h) are using “1-vs.-all” SVM 
classifier. (a)(e) Appearance model in normal case. (b)(f) Kinematic model in normal case. (c)(g) Appearance mode with sufficient illumination but out 

of depth sensor’s range. (d)(h) Kinematic model with insufficient illumination and within depth sensor’s range. 



which demonstrates that our proposed kinematic features are 

strong for each classifier. Comparing columns 1 ((a) and (c)) 

and 3 ((e) and (g)), the effect we mentioned in Section III.B 

and Fig. 2 is manifested. Kinematic (Fig. 4(b) and (d)) and “1-

vs.-all” (Fig. 4(f) and (g)) structures achieve almost the same 

performance. The experiments demonstrate that: 1) the 

proposed kinematic model is robust in each activity class 

according to Fig. 4 (b), (d), (f), and (h). 2) Structure classifier 

is more robust than “1-vs.-all” classifier when using 

appearance model according to comparison between Fig. 4 (a) 

(c) and (e) (g). In feature extraction and training phase, 

kinematic approach is much faster than appliance approach 

since its dimension is quite small (only 4). In the test phase, 

kinematic approach takes an average 19.4ms and the 

appearance approach takes an average 7.4ms to classify a 

video sequence. The length of each video is between 120-220 

frames. 

B. People Identification 

1. Dataset 

We evaluate the proposed people identification algorithm 

using the Cornell 3D activity dataset [13]. This dataset 

contains 4 subjects, different poses, and different lighting 

conditions, performing different activities such as typing on a 

computer, writing on a white board and drinking water etc. 

The training set contains 2000 samples with 1000 positive 

samples (i.e., two images are from the same person) and 1000 

negative samples (i.e., two images are from different persons). 

In experiments, we set the patch size as 4 and quantize each 

channel (H and S channel) into 20 bins. In each condition, 

parameters of RBF kernel of SVM classifier are optimized by 

grid search and cross validation during training phase as 

advised in libSVM manual [3]. In the test phase, we calculate 

the accuracy as well as recall and precision. Some examples 

of this dataset are shown in Fig. 6. 

 

2. Performance Analysis 

Our user identification approach achieves an accuracy rate 

of 99.6%. Our model by combining RGB channels and Depth 

channel can effectively handle user identification problem. 

 

VI. CONCLUSIONS 

In this paper, we have developed a framework for fall 

detection using RGBD camera by combining both 3D 

 

Fig. 5 Examples of image pairs (left: depth image; right: RGB image) for different actions and extracted skeleton features employed in our dataset under three 
different conditions: (a) subject is within the range of the 3D depth sensor (<4 meters distance between the subject and the camera) and with normal illumination; 

b) Subject is within the range of depth sensor but without enough illumination; and c) subject is out the range of the 3D depth sensor (>4 meters distance between 

the subject and the camera) and with normal illumination.  

 



information (depth) and appearance information (RGB). We 

have recognized five categories of falling related events. Our 

framework can identify different users. Experiments 

demonstrated that our framework is effective and robust to 

lighting changes and pose changes. Our future work will 

focus on recognizing more activities, including group 

activities and people interactions. 

 

 

 

Fig. 6 Examples of the Cornell 3D activity dataset [13]. (a) Pose variation. (b) 

Viewpoint variation. (c) Illumination variation. Rectangles on the body 
illustrate the locations and scales of patches where we calculate the color 

histogram. 
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Fig.1 
Illustration of 

kinematic 

feature 
extraction: the 

structure 

difference cost. 
(a) From left to 

right, each 

label’s initial 
(top) and final 

pose (bottom). 

(b) Two main 
elements we 

extracted from 

skeletons as 
features. Left: 

logarithm of 

structure 
difference of 

each activity. 

Right: Height 
sequences in 

each activity. 

Five activities 
to be 

recognized are 

listed in Table 
1. 
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